Telegram Group & Telegram Channel
📌 Какой вектор лучше: Dense vs Multi-vector embeddings

Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.

📍 Dense-векторы (single vector per doc):
— быстрые
— экономные по памяти
— слабо улавливают контекст
— «плавают» при сложных запросах
👉 подходят для простого поиска

📍 Multi-vector (late interaction):
— вектор на каждый токен
— сравниваются токены запроса и документа напрямую
— лучше качество на сложных задачах
— выше требования к хранилищу
👉 баланс между скоростью и точностью

📍 Late interaction ≈ золотая середина:
— быстрее, чем cross-encoders
— точнее, чем dense-векторы

📍 Примеры моделей:
— ColBERT — для текстов
— ColPali — multimodal: текст + PDF как картинки
— ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)

Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6422
Create:
Last Update:

📌 Какой вектор лучше: Dense vs Multi-vector embeddings

Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.

📍 Dense-векторы (single vector per doc):
— быстрые
— экономные по памяти
— слабо улавливают контекст
— «плавают» при сложных запросах
👉 подходят для простого поиска

📍 Multi-vector (late interaction):
— вектор на каждый токен
— сравниваются токены запроса и документа напрямую
— лучше качество на сложных задачах
— выше требования к хранилищу
👉 баланс между скоростью и точностью

📍 Late interaction ≈ золотая середина:
— быстрее, чем cross-encoders
— точнее, чем dense-векторы

📍 Примеры моделей:
— ColBERT — для текстов
— ColPali — multimodal: текст + PDF как картинки
— ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)

Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6422

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from id


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA